StatCrunch logo (home)

Results shared by StatCrunch members
Showing 1 to 15 of 97 results matching Mann-Whitney
Name/Notes Owner Created Size Views
Hypothesis test results:
m1 = median of SMALL
m2 = median of LARGE
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 ≠ 0
Differencen1n2Diff. Est.Test Stat.P-valueMethod
m1 - m221010-7720.0115Exact
#8 Mann-Whitney
rlrynningDec 2, 2015985B466
Hypothesis test results:
m1 = median of Small Groups
m2 = median of Large Groups
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 ≠ 0
Differencen1n2Diff. Est.Test Stat.P-valueMethod
m1 - m221010-7720.0115Exact
Mann-Whitney
chorton3131Dec 1, 2015999B371
Hypothesis test results:
m1 = median of Painscale where gender
m2 = median of Painscale where gender
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 > 0
Differencen1n2Diff. Est.Test Stat.P-valueMethod
m1 - m2121121014701.50.5004Norm. Approx.
Mann-Whitney
larue357Mar 24, 2015989B476
Hypothesis test results:
m1 = median of Painscale where gender
m2 = median of Painscale where gender
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 < 0
Differencen1n2Diff. Est.Test Stat.P-valueMethod
m1 - m2121121014701.50.5004Norm. Approx.
Mann-Whitney
larue357Mar 24, 2015989B493
Hypothesis test results:
m1 = median of High
m2 = median of Low
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 ≠ 0
Differencen1n2Diff. Est.Test Stat.P-valueMethod
m1 - m21001000110450.01Norm. Approx.
Mann-Whitneylead
stephaniehaubrockJan 31, 2015947B543
Hypothesis test results:
m1 = median of Lincoln Potassium level (mg/L)
m2 = median of Clarendon Potassium level (mg/L)
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 > 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 22 20 0.009 504.5 0.2174 Norm. Approx.
Mann-Whitney 15.5.14
heatherbrenaSep 27, 20141KB530
Hypothesis test results:
m1 = median of Lincoln Potassium level (mg/L)
m2 = median of Clarendon Potassium level (mg/L)
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 < 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 22 20 0.009 504.5 0.7899 Norm. Approx.
Mann-Whitney 15.5.14
heatherbrenaSep 27, 20141KB524
Hypothesis test results:
m1 = median of Lincoln Potassium level (mg/L)
m2 = median of Clarendon Potassium level (mg/L)
m1-m2 : m1 - m2
H0 : m1-m2 = 0
HA : m1-m2 ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 22 20 0.009 504.5 0.4349 Norm. Approx.
Mann-Whitney 15.5.14
heatherbrenaSep 27, 20141.024B514
Hypothesis test results:
m1 = median of High
m2 = median of Low
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 100 100 0 11045 0.01 Norm. Approx.
Mann-Whitney Test
piercej5Feb 16, 2013816B786
Hypothesis test results:
m1 = median of Hardware Revmoed
m2 = median of Hardware Retained
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 9 10 -17 67 0.0658 Norm. Approx.
Mann-Whitney
Based on the above Mann-Whitney test calculations (W=67, p-value=0.0658), at an alpha of 0.01 we can conclude that there is no difference between the median percentage in functionality of those patients who had ankle hardware removed and the median percentage in functionality in those patients who had the ankle
rdurham0018Feb 14, 2013840B649
95% confidence interval results:
m1 = median of High
m2 = median of Low
Parameter : m1 - m2
Difference n1 n2 Diff. Est. L. Limit U. Limit Method
m1 - m2 100 100 0 0 1 Approx (95)
Mann-Whitney
billingsld12139Sep 22, 2012741B766
Hypothesis test results:
m1 = median of Low
m2 = median of High
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 100 100 0 9055 0.01 Norm. Approx.
Mann-Whitney for lead levels
billingsld12139Sep 22, 2012815B638
Hypothesis test results:
m1 = median of High
m2 = median of Low
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 100 100 0 11045 0.01 Norm. Approx.
Mann-Whitney
mccaugheyk1Sep 20, 2012816B690
Hypothesis test results:
m1 = median of Low
m2 = median of High
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter < 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 100 100 0 9055 0.005 Norm. Approx.
Mann-Whitney Test for Lead & Aggression Levels
thornsberk1Feb 19, 2011816B723
Hypothesis test results:
m1 = median of 1 POIDS
m2 = median of 2 POIDS
Parameter : m1 - m2
H0 : Parameter = 0
HA : Parameter ≠ 0
Difference n1 n2 Diff. Est. Test Stat. P-value Method
m1 - m2 107 93 15 13701.5 <0.0001 Norm. Approx.
Mann-Whitney POIDS sexe 1 POIDS sexe 2
bontinckNov 29, 2010831B870

1 2 3 4 5 6 7   >

Always Learning