StatCrunch logo (home)

Results shared by StatCrunch members
Showing 31 to 45 of 104703 results
Name/Notes Owner Created Size Views
Total currently enrolled creditsrseitz10Nov 18, 2019174B5
Students' degree majorrseitz10Nov 18, 2019174B7

Variable: Temps. of student's home



Decimal point is at the colon.
Leaf unit = 0.1
69 : 0
70 : 0000
71 : 00
72 : 0000
73 : 0
74 : 00
75 : 000
76 : 
77 : 0

Current temps. of students' homes
rseitz10Nov 18, 2019211B7
Students' eye colorsrseitz10Nov 18, 2019174B4
Scatter Plot Buying and Sellingjgann1Nov 18, 2019174B2
Buying and Selling Histogramjgann1Nov 18, 2019174B1

Multiple linear regression results:


Dependent Variable: sales price in 1000s
Independent Variable(s): square footage, bathrooms
sales price in 1000s = -103.38301 + 0.073581699 square footage + 137.31692 bathrooms

Parameter estimates:


ParameterEstimateStd. Err.AlternativeDFT-StatP-value
Intercept-103.3830189.394053 ≠ 036-1.15648640.2551
square footage0.0735816990.031341556 ≠ 0362.3477360.0245
bathrooms137.3169242.517934 ≠ 0363.22962350.0026

Analysis of variance table for multiple regression model:


SourceDFSSMSF-statP-value
Model22943778147188945.754971<0.0001
Error361158081.932168.942
Total384101859.9

Summary of fit:


Root MSE: 179.35702
R-squared: 0.7177
R-squared (adjusted): 0.702
Best Model
wwumbachNov 18, 20194KB1
One sample T hypothesis test box plottaniagonzalez7452Nov 18, 2019174B3

One sample T hypothesis test:


μ : Mean of variable
H0 : μ = 333
HA : μ > 333

Hypothesis test results:
VariableSample MeanStd. Err.DFT-StatP-value
Calories337.285713.4345187131.24783550.1171
One sample T hypothesis test
taniagonzalez7452Nov 18, 2019947B3

One sample proportion summary confidence interval:


p : Proportion of successes
Method: Standard-Wald

95% confidence interval results:
ProportionCountTotalSample Prop.Std. Err.L. LimitU. Limit
p3937810.503201020.017891040.468135230.53826682
Q. 1 part b
taniagonzalez7452Nov 18, 20191KB2

One sample proportion summary hypothesis test:


p : Proportion of successes
H0 : p = 0.5
HA : p ≠ 0.5

Hypothesis test results:
ProportionCountTotalSample Prop.Std. Err.Z-StatP-value
p14330.424242420.087038828-0.870388280.3841
One sample proportion summary hypothesis test
srg4Nov 18, 20191KB1
Correlation between Number of hours on social media after 8 and before you went to sleep last night and Hours of sleep last night is:
-0.071279075
Correlation
e47b92957516689be6e13921f8703274ae85f6a3_canvas_utamlpNov 18, 2019149B3

One sample T hypothesis test:


μ : Mean of variable
H0 : μ = 2
HA : μ > 2

Hypothesis test results:
VariableSample MeanStd. Err.DFT-StatP-value
Number of hours on social media after 8 and before you went to sleep last night2.95918370.21420471484.4778831<0.0001
One sample T hypothesis test
e47b92957516689be6e13921f8703274ae85f6a3_canvas_utamlpNov 18, 20191.019B2

Multiple linear regression results:


Dependent Variable: Salary (Y)
Independent Variable(s): Height (X1), Weight (X2), Field Percentage (X3), Points Per Game (X4)
Salary (Y) = -6772409.5 + 65291.622 Height (X1) + 11921.006 Weight (X2) + -49953.819 Field Percentage (X3) + 877465.56 Points Per Game (X4)

Parameter estimates:


ParameterEstimateStd. Err.AlternativeDFT-StatP-value
Intercept-6772409.553625432 ≠ 035-0.1262910.9002
Height (X1)65291.622733213.41 ≠ 0350.0890485920.9296
Weight (X2)11921.00670164.62 ≠ 0350.169900520.8661
Field Percentage (X3)-49953.819126331.71 ≠ 035-0.395417890.6949
Points Per Game (X4)877465.56211840.83 ≠ 0354.14209850.0002

Analysis of variance table for multiple regression model:


SourceDFSSMSF-statP-value
Model41.5878298e153.9695746e145.28856390.0019
Error352.6270858e157.5059595e13
Total394.2149157e15

Summary of fit:


Root MSE: 8663694.1
R-squared: 0.3767
R-squared (adjusted): 0.3055
Residuals stored in new column: Residuals
Studentized residuals stored in new column: Stud. Resid.
Predicted values stored in new column: Pred. Values
Standard error for mean response stored in new column: Std. Err. Mean
95% lower limit for mean response stored in new column: 95% L. Limit Mean
95% upper limit for mean response stored in new column: 95% U. Limit Mean
Standard error for individual prediction stored in new column: Std. Err. Ind. Pred.
95% lower limit for individual prediction stored in new column: 95% L. Limit Ind.
95% upper limit for individual prediction stored in new column: 95% U. Limit Ind.
Cook's distance stored in new column: Cook's D
DFFITS stored in new column: DFFITS
Leverage stored in new column: Leverage
Multiple Linear Regression
ltt0006Nov 18, 20195KB2

Multiple linear regression results:


Dependent Variable: Salary (Y)
Independent Variable(s): Points Per Game (X4), Warriors, Pelicans, Height (X1), Weight (X2), Field Percentage (X3)
Salary (Y) = -14250408 + 982872.96 Points Per Game (X4) + -1191433.4 Warriors + -5352685.2 Pelicans + 166084.74 Height (X1) + 16849.349 Weight (X2) + -68808.982 Field Percentage (X3)

Parameter estimates:


ParameterEstimateStd. Err.AlternativeDFT-StatP-value
Intercept-1425040853993884 ≠ 033-0.263926330.7935
Points Per Game (X4)982872.96222049.85 ≠ 0334.4263618<0.0001
Warriors-1191433.43483223 ≠ 033-0.342049140.7345
Pelicans-5352685.23649710.2 ≠ 033-1.46660560.1519
Height (X1)166084.74739380.01 ≠ 0330.224627030.8237
Weight (X2)16849.34972692.864 ≠ 0330.231788210.8181
Field Percentage (X3)-68808.982131474.82 ≠ 033-0.523362450.6042

Analysis of variance table for multiple regression model:


SourceDFSSMSF-statP-value
Model61.7603392e152.9338987e143.9444140.0044
Error332.4545764e157.4381104e13
Total394.2149157e15

Summary of fit:


Root MSE: 8624448.1
R-squared: 0.4176
R-squared (adjusted): 0.3118
Residuals stored in new column: Residuals
Studentized residuals stored in new column: Stud. Resid.
Predicted values stored in new column: Pred. Values
Standard error for mean response stored in new column: Std. Err. Mean
95% lower limit for mean response stored in new column: 95% L. Limit Mean
95% upper limit for mean response stored in new column: 95% U. Limit Mean
Standard error for individual prediction stored in new column: Std. Err. Ind. Pred.
95% lower limit for individual prediction stored in new column: 95% L. Limit Ind.
95% upper limit for individual prediction stored in new column: 95% U. Limit Ind.
Cook's distance stored in new column: Cook's D
DFFITS stored in new column: DFFITS
Leverage stored in new column: Leverage
Multiple Linear Regression
ltt0006Nov 18, 20196KB0

<   1 2 3 4 5 6 7 8 9 10 11 12   >

Always Learning